Khagol Bulletin # 136 (Apr 2025) - ENG

| 09 | KHAG L | No. 136 - APRIL 2025 Some recent large-scale surveys have attempted to address this by identifying the global impact of the jet on molecular gas (e.g. Molyneux et al. 2023) or presence of large-scale disturbance in gas kinematics (Kukreti et al. 2023). The broad results are that although ionised outflows are found in a large fraction of RLGs, global scale impact on the kinematics of the dense gas is lacking. However, the central few kpc are certainly strongly affected in all systems. Thus it appears that jets do affect the properties of the nuclear region of galaxies and large scale regionmight show transient effects. More detailed studies on this topic with upcoming telescopes such as SKA, NgVLA, TMT etc can help provide a consensus. References Fabian, A.C.; Nulsen, P.E.J. Subsonic accretion of cooling gas in clusters of galaxies. MNRAS 1977, 180, 479–484. Peterson, J.R.; Paerels, F.B.S. et al. X-ray imaging-spectroscopy of Abell 1835. A&A 2001, 365, L104–L10. Croton, D.J.; Springel, V et al. Themany lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 2006, 801 365, 11–28. Harrison, C.M.; Ramos Almeida, C. Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation. Galaxies 2024, 12, 17. Mukherjee, D. Simulating jet feedback on kpc sales: a review, submitted toGalaxies. Blandford, R.D.; Rees, M.J. A “twin- exhaust” model for double radio sources. MNRAS 1974, 169, 395–415. Scheuer, P.A.G. Models of extragalactic radio sources with a continuous energy supply from a central object. MNRAS 1974, 166, 513. Blandford, R.D.; Ostriker, J.P. Particle acceleration by astrophysical shocks. ApJL 1978, 221, L29–L32. Norman, M.L.; Winkler, K.H.A.; et al. Structure and dynamics of supersonic jets. A&A 1982, 113, 285–302. Blandford, R.D.; K ц nigl, A. Relativistic jets as compact radio sources. ApJ 1979, 232, 34–48. Butcher, H.R.; van Breugel, W.; Miley, G.K. Optical observations of radio jets. ApJ 1980, 235, 749–754. Heckman, T.M.; Miley, G.K.; Balick, B.; van Breugel, W.J.M.; Butcher, H.R. An optical and radio investigation of the radio galaxy 3C305. ApJ 1982, 262, 529–553. Heckman, T.M.; van Breugel, W.J.M.; Miley, G.K. Emission-line gas associated with the radio lobes of the high-luminosity radiosource 3C 171. ApJ 1984, 286, 509–51. DeYoung, D.S. F-R I and F-R II Radio Galaxies. ApJ 1993, 405, L13. Saxton, C.J.; Bicknell, G.V.; et al. Interactions of jets with inhomogeneous cloudymedia. MNRAS2005, 359, 781–800. Sutherland, R.S.; Bicknell, G.V. Interactions of a Light Hypersonic Jet with a Nonuniform Interstellar Medium. ApJS 2007, 173, 37. Wagner, A.Y.; Bicknell, G.V. Relativistic Jet Feedback in Evolving Galaxies. ApJ 2011, 728, 29. Wagner, A.Y.; Bicknell, G.V.; Umemura, M. Driving Outflows with Relativistic Jets and the Dependence of Active Galactic 1173 Nuc l eus Feedback E f f i c i enc y on Interstellar Medium Inhomogeneity. ApJ 2012, 757, 136. Mukherjee, D.; Bicknell, G.V.; et al. Relativistic jet feedback in high-redshift galaxies - I. Dynamics. MNRAS 2016, 461, 967–983. Bicknell, G.V.; Mukherjee, D.; et al. Relativistic jet feedback - II. Relationship to giga-hertz peak spectrum and compact steep spectrum radio galaxies. MNRAS 2018, 475, 3493–3501, Mukherjee, D.; Wagner, A.Y.; et al. The jet- ISM interactions 1189 in IC 5063. MNRAS 2018 (a), 476, 80–95. Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback - III. Feedback on gas discs. 1136 MNRAS2018 (b), 479, 5544–5566. Mandal, A.; Mukherjee, D.; et al. Impact of relativistic 1196 jets on the star formation rate: a turbulence-regulated framework. MNRAS2021, 508, 4738–4757. Meenakshi, M.; Mukherjee, D.; et al. Modelling observable signatures of jet-ISM interaction: thermal emission and gas kinematics. MNRAS 2022, 1210 516, 766–786. Girdhar, A.; Harrison, C.M.; et al. Quasar feedback survey: multiphase outflows, turbulence, and evidence for feedback caused by low power radio jets inclined into the galaxy disc. MNRAS 2022, 512, 1608–1628. Zovaro, H.R.M.; Sharp, R.; et al. Jets blowing bubbles in the young radio galaxy 4C 31.04. MNRAS2019, 484, 3393–3409. Murthy, S.; Morganti, R.; et al. Cold gas removal from the centre of a galaxy by a low-luminosity jet. Nature Astronomy 2022, 6, 488–495. Nesvadba, N.P.H.; Wagner, A.Y.; et al. Jet- driven AGN feedback on molecular gas and low star-formation efficiency in a massive local spiral galaxy with a bright X-ray halo. A&A 2021, 654, A8. Audibert, A.; Ramos Almeida, C.; et al. Jet- induced molecular gas excitation and turbulence in the Teacup. A&A 2023, 671, L12. Jarvis, M.E.; Harrison, C.M.; et al. The quasar feedback survey: discovering hidden Radio-AGNand their connection to the host galaxy ionized gas. MNRAS 2021, 503, 1780–1797. Ramos Almeida, C.; Bischetti, M.; et al. The diverse cold molecular gas contents, morphologies, and kinematics of type-2 quasars as seen by ALMA. A&A 2022, 658, A155. Garc н a-Burillo, S.; Alonso-Herrero, A.; et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies. A&A 2021, 652, A98. Tadhunter, C.; Oosterloo, T.; et al. An ALMA CO(1-0) survey of the 2Jy sample: large and massive molecular discs in radio AGN host galaxies. MNRAS 2024, 532, 4463–4485. Audibert, A.; Dasyra, K.M.; et al. CO in the ALMA Radio-source Catalogue (ARC): The molecular gas content of radio galaxies as a function of redshift. A&A 2022, 668, A67. Sabater, J.; Best, P.N.; et al. The LoTSS view

RkJQdWJsaXNoZXIy MzM3ODUy